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Examples of Flexible Multibody Spacecraft in Large Overall Motion:  
Configuration Change, Spin, Slewing, and Antenna “Extrusion” 
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       JPL’s Galileo Spacecraft : A Flexible Multibody System 
1. HG flexible antenna rotates 
w.r.t. flexible stator 
2.RTG booms swivel w.r.t. 
HG antenna about rotary hinges   
to provide wobble damping 
3.Scan platform rotates 
w.r.t. stator in 2 dof hinges 
------------------------------ 
 
Essence: a typical spacecraft is 
made of several flexible bodies, 
connected by rotational joints,  
with the bodies undergoing  
large rotation with small  
elastic vibration 
 
  
 

Studied Jupiter’s Atmoshere 



03/22/05 Chart 4 03/22/05 Chart 4 

Kane’s Method of Deriving the Simplest Eqns of Motion by the Least 
Labor:  Example--50 DOF System of 4 Flex Bodies with Rotary Joints  
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For 50 dof system, form, decompose & solve 50x50 dense, time-varying matrix 4 
times per RK step; Unmodified this approach is expensive !  

Use of dot-products make 
Kane’s Equations of least labor 

 
 
 
 

Velocity is in terms of  j-th Partial Velocities ,           
which are functions of gen. coords, q’s   

        Acceleration of generic point k 
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Simplifying motion variables 
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Kane, T. R. and Levinson, D. A., “Formulation of Equations of Motion for  
Complex Spacecraft,” Jour. of Guidance and Control, Mar-Apr 1980, pp. 99-112. 
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3-Step Recursion of Kane’s Eqs for Block-diagonal Matrix Eqs*  
 

inboard body ang vel, modal slope rates, gimbal rotation rates 

Step 1) Form Kinemtics Eqns going Forward from Body 1 to Body n  

inboard body hinge Pj-velocity, plus account for sliding joint 

*Banerjee, A. K., "Block-Diagonal Equations for Flexible Multibody Dynamics with  
Geometric Stiffness and Constraints", JGCD, Nov. - Dec., 1993, pp. 1092-1100. 

j 
c(j) 

ang. vel. j-frame 

velocity of Qj 
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Block-Diagonal Eqns (continued) 

matrixvelocitypartialisR j

Step 3)After eqns for body #1 are formed, go forward one more 
time to explicitly “uncover” eqns for bodies 2,…,n one at a time  

Write Eqs. for Body j Vibration for Base Accl: invert  nmodes x nmodes  matrix 
 

Write Rotn / Tran Newton-Euler Eqs for body j hinge: invert matrix of size 1 to 6 
 

Step 2) Form Dynamical Eqns for Body n Going Backward to body1 
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Applications: Degenerate Case of Systems of Rigid Bodies 

Two Antenna Booms, each 150 m long, for 
Yawing Shuttle WISP experiment  

  Shuttle Waves in Space Plasma (WISP) Experiment 

Banerjee, A.K & 
Nagarajan, S., “Efficient  
Simulation of Large Overall 
Motion of Beams Undergoing 
Large Deflection”, Multibody 
System Dynamics, ’97, 
pp.113-126.  
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Elastic Beam Modeled as Many Rigid Rods Pin-Connected by  
Rotational Springs, for Large Bending Simulation of 150 m Antenna  

Torsion spring stiffness values 
obtained by equating K*δθ  
to bending moment in 
beam& discrete models 
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Rigid Body Order-n vs. Nonlinear FEM for Shuttle WISP Antenna:  
Large Yaw Angle, Root Bending Moment, Tip Deflection, CPU sec 

Yaw 
(deg) 

Bending 
Moment 
 

Tip 
Defl 
80 m 
for a 
150 m 
beam 

CPU 
sec 

O(n) Model 36 times faster than FEM 

      Shuttle yaws ~1 rev in 20 min 



03/22/05 Chart 10 03/22/05 Chart 10 

Deployment & Retraction Problems : Variable-n O(n) Formulation  
of two 150 m Booms from Yawing Shuttle [Banerjee, JGCD,1992] 

Deployment (telescoping) Retraction (spaghetti-eating) 

Tip 
Deflec 
max 16 ft 

Boom 
Length 
 

Deflec  
50 m 
from  
tip 

WISP Boom Bending due to Coriolis Force 

 
 

Deploying 
or 
Retieval 
described 
by 
varying  
number 
of 
rigid rods 
in play 

12 min to  
deploy/ 
retrieve 
150 m 
boom  

Tip 
Deflec 
max 23 ft 
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Modeling Cable Deployment Dynamics in Towing of Underwater  
Powered Device Connected by Cable to Ship  

Cable modeled by  
pinned links with  
no joint stiffness: 
Banerjee &Do,  
JGCD,’94 
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Cable Length & Tension Change in Deployment / Retrieval vs. Time 

length 

 tension 

deployment retrieval 600 m in 600 sec 

Monitoring internal force with O(n) formulation 
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Simplifying Rotational Generalized Speeds (Mitiguy & Kane) 

Revolute Joint 2 DOF Az-El Gimbal 3 DOF Spherical Joint 
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Hinge relative rotation angle rates are not the best choices  
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Efficient Generalized Speeds (D’Eleuterio & Hughes) for 
Vibration of Elastic Bodies  in Large Rotation   
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Note: use of vibration 
modes, universally done, 
is an act of premature 
linearization  
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Consequences of q-independence of Velocity Expression on Mass 
Matrix in Kane’s Equations for a Free-Flying Flexible Body 
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Facilitates fast computation for single or terminal flexible body.   

Kane’s Equations, obtained by integrating over body, are: 

RUM =!

Partial velocities are now free of generalized coordinates 

Mass matrix in LHS is now constant 
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Application: System of 4 Hinge-Connected Flexible Bodies, Kane’s 
vs. Recursive Method with Efficient Gen. Speeds--- Loads Analysis 
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Kane’s Eqns with customary generalized speeds        44.4 sec 

Recursive Eqns with efficient generalized speeds        21.0 sec 

Constraint torque at a joint in a 4-flex-body system with 1-, 2-, 3-
rotation joints:        [Int. Cong. Theo. & App. Mech, Warsaw, 04] 

Internal 
torque for 
prescribed 
motion of 
rev. joint 
 
 Identical 
result by 
2 methods  
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Perils of Premature Linearization for Small Motion : 
Use of Vibration Modes, Can Lead to Loss of Stiffness 

   
P(M) 

B 

R K 

A 

N 

W(t) 
A1> 

A2> 

B2> B1> 

LVPN> = -OMEGA*L*Q1*A1> + ((L+R)*OMEGA+U1*L)*A2>:  

U1' =  -[K/(M*L^2) -OMEGA^2]*Q1 - (1+R/L)*OMEGA' 

Q1 

L 

 
 

Premature linearization 
occurs if partial velocity in 
Kane’s eqn is derived from 
linear velocity.  Recall 
Kane’s Eqns: 

PV>=: L*A2> 

            wrong eqn ! 
 

LACC>=(…)*A1>+((L+R)*OMEGA’+U1’*L-OMEGA^2*L*Q1)*A2> 
M*LACC> . PV>=-K*Q1       (Kane’s Eqn) 

Stiffness decreasing with speed, possibly going negative  ! 

Linearized velocity of P in N for small angle Q1 
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  Correct Linearization Without Deriving Full Nonlinear Equations 

Small vibration of pendulum with large base rotation 

P(M) 
B 

R K 

A 

N 

W(t) 
A1> A2> 

B2> B1> 

Q1 

L 

U1' =  -[K/(M*L^2) +(R/L)*OMEGA)^2]*Q1 - (1+R/L)*OMEGA'     correct eqn 
*This approach is not feasible for general elastic continua. 
 

*Linearize partial velocity 
from nonlinear velocity 
expression.  
(Beam paper: Kane, 
Ryan & Banerjee, JGCD, 
‘87; Plate Paper: Banerjee 
& Kane, JAM,’89) 

            

NLVPN> = OMEGA*R*A2> + (OMEGA+U1)*L*(-sin(Q1)*A1>+cos(Q1)*A2>)  
PVN>= L*(-sin(Q1)*A1>+cos(Q1)*A2>);   
Now linearize: LPV>=L*(A2>-Q1*A1>) 
LVPN> = -OMEGA*L*Q1*A1> + ((L+R)*OMEGA+U1*L)*A2>  
ACC>=-A1>*(..+(L+R)*OMEGA^)+((L+R)*OMEGA’+L*(U1’-OMEGA^2*Q1)*A2> 
  

Premature. linear par. vel PV>=: L*A2> 

Nonlinear expression of velocity of P in N 
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Spin-up Maneuver of Attached Base  
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Good Test Case for Centrifugal Stiffening of Beams, Plates,  
and Arbitrary Flexible Structures: Spin-up Maneuver of 
the Attached Base   

Relevant for Helicopter Rotor Spin-up & Steady Spin 
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Redeeming Prematurely Linearized Eqns by Adding Geometric 
Stiffness due to Inertia Loads: Makes Up for Loss of Stiffness 

•    
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nonlinear
linearized
prematurely linearized

UKG=0.5*M*OMEGA^2*(R+L)/L*[0,q1]*[1,-1;-1,1]*[0;q1]  

U1' = [- K/(M*L^2) + OMEGA^2 - (1+R/L)*OMEGA^2]*q1 - (1+R/L)*OMEGA' 
Adding  d(UKG)/dq1  makes the equation correct 

Potential for KG of bar* 
due to inertia load 
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of velocity for small  
vibration leads to  
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USING VIBRATION MODES IN LARGE OVERALL MOTION IS AN ACT OF 
PREMATURE LINEARIZATION:  A GENERAL THEORY OF MOTION-
INDUCED STIFFNESS CORRECTS UNAVOIDABLE ERROR IN EQUATIONS 

“Dynamics of an Arbitrary Flexible Body in Large Rotation and Translation” 
by Banerjee & Dickens, JGCD,’90, where acceleration terms,  a1,…,a12  are 
identified.   See results on next slide: 

Gen. force for motion-induced stiffness 
Add geometric stiffness for 12 sets of motion-induced loads, for general motion of 
frame, to overcome loss of stiffness inevitably occuring with use of vibration modes 
 

Compute KG 
from FEM for 
inertia load on 
a point mass at 
(x,y,z) 
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BEAM & PLATE SPECIAL THEORIES COMPARED AGAINST GENERAL 
THEORY WITH MOTION-INDUCED STIFFNESS : case of BASE SPIN-UP  

Geo. stiff. 
theory 
& special* 
beam and 
plate 
theories 
agree  

Plate 
corner 
defln 
by two 
theories 

Beam 
tip defln 
by two 
theories 

*Beam neutral axis stretches [JGCD,’87]  *Plate midsurface does not stretch[JAM,’89] 
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Flexible Spinning Paraboloidal Antenna of Dual-Spin Spacecraft 

Shell 
node 
defln in 
spin-up 
by two 
theories 
 

Spin-up of paraboloid shell model: KG-theory works,modal theory 
fails [Banerjee & Dickens, JGCD,’90, pp. 221-227] 
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Model Reduction for Articulated Flexible Bodies : 3 Beam Example 

•  Three hinge-connected elastic beams with 
actuator and sensor at joints 
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We want a select a set of component modes that 
participate significantly in the system modes 
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Flexible Body Model Reduction by Singular Value Decomposition 
of Projected SYSTEM Modes: Three Beam Example 
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Results of 29 dof model designed to match first 15 freqs of 68 
dof articulated flexible body system for 3 beam model [Lemak] 
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Bode Plot for Reduced & Full Order Model in An Actual Application [Lemak]  

Body SC 
Bus 

Scan. 
Pivot 
Tube 

Scan. 
Mirror 

Scan. 
Az 
Wheel 

Scan. 
El 
Wheel 

Starer 
Pivot 
Tube 

Starer 
Mirror 

Starer 
Az 
Wheel 

Starer 
El 
Wheel 

Full 
System 
Modes 

*894 30 9 3 3 30 9 3 3 

Reduced 
Model 
Modes 

*31 4 2 3 3 4 2 3 3 
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Deriving Damping of Components from System Level Damping 

[ ] 1t 2C −− ΦωςΦ=
t
jjj SCSc =

t
jjj SCSc =

Assume System Damping Factor ζ 

Derive component damping matrix,  
with      matrix selecting component j 
 

jS

tt ΦΦΦ=Φ −− 11 )( pseudo-inverse 
least square err 
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Result of System Damping Re-synthesis with Derived 
Component Damping in an Application [Lemak] 

0 10 20 30 40 50 60
0

0.5

1

Mode Index

D
am

pi
ng

 C
oe

ffi
ci

en
t

 

 
Assigned Damping
Obtained Damping

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8
Zeta Error

Mode Index

Ze
ta

 D
iff

er
en

ce
<10Hz 



03/22/05 Chart 30 03/22/05 Chart 30 

Recursive Formulation for Constrained Mechanical Systems 

1. Cut Loops and Make Forward Pass for Kinematics of Tree System so Formed 

2. Do Backward Pass Tracking Part of Contributions from Constraint  Forces 

3. Complete Second Forward Pass with Constraint Forces in Dynamical Eqns 

Efficient Generalized Speeds, Recursive Formulation, and Multi-Point 
Constraints in Flexible Multibody Dynamics-Banerjee & Lemak, JGCD, ‘07 

4. Add Constraint Conditions & Solve Dynamical & Constraint Eqns 

Closed loop 
system is cut 
to form  
open loop 
tree system: 
then add 
constraints. 
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Constrained Dynamical Equations: Adding Extra DOFs and 
Constraint Eqns --- Two Formulations 

Order-n3 Extended Kane Eqns                  New Order-n Eqns: 
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CPU Results for 8 Bodies, 3 LOOPS, Varying # Modes [Lemak] 

*Note: Absolute CPU time will go down with use of faster computers  

Number of 
Modes per 
Body 

Number of 
Generalized 
Speeds 

CPU sec for 
10 sec 
Extended 
Kane 
Formulation* 

Ratio of Ext. 
Kane over 
Efficient  
Order-n 
Formulation 

0 24 6.28 0.969 

4 56 57.57 1.516 

8 88 909.29 3.053 

12 120 2484.3 4.455 
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Stroboscopic Plot of a Whirling Chain of Five Articulated 
Elastic Trusses, 75 dof with 3 constraints [Lemak] 

XI
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XI
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XI
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XI
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ZI

• Chain of 5-flexible bodies 
connected by Hooke’s joint 
•  First body with 3 rotations 
•  Three translational constraints at 
other end of chain, freed with force 
•  Constraint imposed with eventual 
excellent constraint satisfaction 

 

JGCD paper [Banerjee & Lemak,’07] 
on constrained flex body “O(n)” eqns 
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Kane’s Equations for Variable Mass Flexible Body Dynamics  
[ Banerjee,  Int. Cong. Th. & App. Mech, ’08, Adelaide ] 

RHS has Thrust, External Forces, & Forces from Potential π  due 
to Structural Stiffness & Geometric Stiffness due to Thrust , & 
Dissipation Functions D. 
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             Form of (6+n) DOF Flexible Rocket Dynamics Eqns 
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Dynamical Eqns Involve Variable Mass Modal Integrals,  )( jI

States are frame origin velocity, angular velocity, efficient modal 
generalized speeds; 
Effects of thrust show up in generalized force and load-dependent 
geometric stiffness of structure, which affects frequencies.  
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Computing Variable Mass Modal Integrals in Rocket Dynamics  
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Approximation: 
Modes Not Changing Spatially  
with Time: simplifies time- 
varying modal integrals via 
interpolation  

Mass at time t modeled by Hermite polynomial in terms of  
initial mass, mass loss rate, and final mass 

)()( tgmtm f=
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  Commanded Gimbal Angle, Altitude, Horiz. Disp, Pitch Angle (ICTAM 
‘08) 
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  Tip Defl.,First Mode Freqs,Torque for Prescribed Motion (ICTAM ‘08) 
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CONCLUSION: High-Fidelity, Time-Efficient Modeling 
of Large Overall Motion of Flexible Multibody Systems 

1.  Computational efficiency increases with i) Block-diagonal 
recursive Kane formulation, ii) Choosing generalized speeds to 
simplify dynamical eqns, iii) Representative modal reduction. 

2. Geometric stiffness for 12 inertia loads corrects unavoidable 
error of premature linearization in using vibration modes. 

3. Large deflection treated by  O(n) formulation with spring-
connected rigid multibody models, producing as high-fidelity 
results as nonlinear FEM, & being more time-efficient.  

4. Variable-n O(n) method models deployment / retrieval 
 of beams and cables with fidelity and efficiency. 

 
 
 
 

5. For systems with closed structural loops the recursive method,  
   employed by cutting loops & solving constraint forces, is efficient. 

6. Kane’s eqns for variable mass flexible bodies, modal integrals via 
Hermite interpolation, with freqs modified by thrust, are given. 
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UPCOMING BOOK: FLEXIBLE MULTIBODY DYNAMICS, 
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